AbsolutAire, Inc.

Engineering Information, Standards & Guidelines

100 cu ft natural gas = 1 therm; 1 therm/hr = 100,000 BTU/hr = 100 MBH

Natural gas cost (Oct 2008 Kalamazoo) = \$1.15/therm

Electricity cost (Oct 2008 Kalamazoo) = \$0.105/KWH (10.5 cents/KWH)

Electric units - Coil sizing requirements: $Kwh = (CFM \times 1.08 \times \Delta T)/3415$

BTUH = CFM x 1.08 x Δ T (closest to actual) <-> **BTUH** = CFM x 1.14 x Δ T (includes safety)

BTUH = (P x Cp x CFM x 60 x Δ T)/0.92 (Actual). Where P = Air Density at fan, Cp = 0.241 (constant)

Natural Gas: 27.71" w.c. = 1 PSI = 16 ounces/in² Gas Pressure DF burners add humidity at a rate of 11.69grains/lb/100" F temp rise

LP Gas: 93,000 BTU per gallon. LPG cost: approx. \$2.50 per therm

DX Cooling: MBH/12 = Tons of Cooling

Mixed Air:DB mixed air = $(DB_1 \times \%_1) + (DB_2 \times \%_2)$ $_1$ = Air Stream 1Grains/lb (G) mixed air = $(G_1 \times \%_1) + (G_2 \times \%_2)$ $_2$ = Air Stream 2

Evap Cooling (87% eff): LATdb = EATdb – 0.87(EATdb – EATwb)

ANSI Stds: 100% OA: ANSI Z83.4a, CSA 3.7 (2001) Recirc 80/20 & 85/15: ANSI Z83.18a (2001) Spray Bake: ANSI Z83.4 and UL795 Bake Only (Process) & APD90: UL795

Burners:

AA-Series and V-Series Model Units

		Natural	Gas	LP C	LP Gas	
	<u>MBH/ft</u>	<u>ΔΤ°F 100% OA</u>	<u>ΔT°F 80/20</u>	<u>ΔΤ°F 100% OA</u>	<u>ΔT°F 80/20</u>	
Maxon NP-LE	750	131	100	95	95	
Midco HMA2	2 650	131	100	95	90	
Eclipse	700	143	110	100	95	

Burners:	<u>R-Series Model Units</u>					
		<u>Natural Gas</u>		<u>LP Gas</u>		
-	MBH/ft	<u>ΔΤ°F 100% OA</u>	<u>ΔT°F 80/20</u>	<u>ΔΤ°F 100% OA</u>	<u>\T°F 85/15</u>	
Maxon NP-LE	750	125	100	95	90	
Midco HMA2	650	125	100	95	90	
Eclipse	700	125	110	95	90	
				October 14, 2008	s:/engstd.doc	

AbsolutAire, Inc. Engineering Information, Standards & Guidelines

Motor Drive Losses*:	Up to 1-1/2 HP:	10%	*Fan manufacturers may provide specific
	2 HP to 25 HP:	5%	values to use in place of these which
	30 HP + higher:	3.5%	will supersede these values.

Power used by electric motors: Watts = Motor Efficiency % x Voltage x Amps **Motor HP** = Watts/746 or Kw/0.746 = 2545 BTU **Motor run cost per hour** = [(HP x 0.746)/Motor Efficiency] x Electricity Cost per KWH **BHP (approximate)** = (Volts x Amps x Power Factor x Efficiency x $\sqrt{3}$)/746

Above based on measured electrical data

Velocity Standards:

	<u>Max fpm</u>		<u>Max fpm</u>
Inlet Hoods	600	Steam/HW Coils	1000
Evap Media	500	HiE Filters	500
Inlet Plenums	900	30% Pleated Filters	500
Legs	600	DustLok Filters	450
Cooling Coils	500	Alum Filters (2")	600 (0.10"pd @ 520 fpm)
		Alum Filters (1")	600 (0.09"pd @ 520 fpm)

- Fan Laws: CFMn = CFMo (RPMn/RPMo) SPn = SPo (RPMn/RPMo)² or SPn = SPo (CFMn/CFMo)² BHPn = BHPo (RPMn/RPMo)³
- Friction Losses:Duct: $Hf = 0.0307 \times (V^{0.533}/Q^{0.612}) \times Length of Duct in feetElbows:Mitered elbow w/o turning vanes = 1.2 VpMitered elbow w/ turning vanes = 0.6 Vp$

Velocity: V(fpm) = 4005 x VVp (in. w.c.)

Metric Conversions: $m^3/S = CFM \times 0.000471947$ mm = inches x 25.4W = BTUH x 0.2931kw = HP/0.7457Pa = in wc x 248.84L/s = CFM x 0.4719KW = (BTUH x 0.2931)/1000°C = (°F - 32) x 5/9kPa = (in wc x 248.84)/1000°F = (1.8 x °C) + 32kPa = 6.895 X PSI

Also see: <u>www.engineeringtoolbox.com</u> for other formulas and tools